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Abstract

This paper describes a class of sound fields generated at a sharp edge by fluid flow. These fields, half-way between

monopoles and dipoles in both amplitude and directivity, are sesquipoles (‘sesqui’ being a term for ‘one and a half’). Such

fields are generated with large amplitude when a high-frequency gust strikes the leading edge of an aerofoil or fan blade,

and are important in aeroacoustics. Four basic sesquipoles are identified, the two- and three-dimensional single-frequency

sesquipoles, and the two- and three-dimensional impulsive sesquipoles; and four related sesquipoles are constructed from

sources whose strength has a Gaussian or top-hat profile in time or along the span. Of these eight fields, seven are new, the

previously known field being the two-dimensional single-frequency sesquipole, for which R. Martinez and S.E. Widnall

gave an explicit formula in 1983. The results are applicable to studies of turbofan noise.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is concerned with a type of sound field generated by a convected gust which strikes the leading
edge of a high-speed aerofoil or fan blade. This sound generation problem, an example of ‘blade–vortex
interaction’, is of fundamental importance in noise research on turbofan aeroengines (e.g. Refs. [1,2]). The
author has obtained an analytical solution [3] of an idealised version of the problem, unifying and generalising
previous work [4–8]. The solution gives the full three-dimensional sound field, including the near field, when
the gust has arbitrary shape in space and time.

A feature of continuum mechanics is the usefulness of ‘basic singular solutions’ of the governing equations,
containing, for example, delta functions or inverse powers of distance. These solutions are invaluable for
constructing Green’s function representations of a field quantity, and on their own are accurate away from
singularities, e.g. in describing a monopole or dipole field. This paper gives a detailed account of basic singular
solutions, half-way between monopoles and dipoles in both amplitude and directivity, of the equations of
aeroacoustics. These solutions, which may be called sesquipoles, are perfectly adapted to describing the sound
generated at a sharp edge. The paper contrasts with Chapman [9], which, by design, excluded delta functions,
using, instead, rise-time and width parameters to describe source and field shapes.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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A key aim of the paper is to give a complete account of the directivity patterns of the acoustic field produced
by gusts localised in space or time. The directivities are complicated, and depend strongly on the type of gust;
hence the paper contains a large number of detailed results for eight different types of gust, including both the
near field and far field. For seven of these types of gust, the results are new. One reason that these sound fields
have not previously been calculated, despite their fundamental nature in aeroacoustics, is that they require
evaluation of Fourier inversion integrals in two complex variables. Since practical methods for evaluating
these integrals for leading-edge noise are now available [3], the present paper concentrates on giving a large
number of useful results.

The results in the paper are intelligible without reference to the way in which they were derived, i.e.
the results can all be understood by acousticians who would not themselves wish to evaluate inversion
integrals in the complex plane. Nevertheless, the results are complicated, especially the three-dimensional
directivity patterns, and one naturally seeks to apply physical insight to understand the results in physical
terms. The most important fact is that the problem is doubly anisotropic, in that there are two
special directions, namely the direction of the mean flow and the direction of the leading edge. Moreover,
around a sharp leading edge there are singularities in the pressure and velocity fields, of inverse square-root
type for a two-dimensional field, but of a far more complicated type for the three-dimensional field
around a point singularity on the leading edge. Even when the sound generation is localised to a small
segment of the leading edge, the field is still singular all the way along the leading edge, arbitrarily far from
the sound generation region. Another important physical fact is the profound difference between near and
far fields. These physical aspects of the problem are referred to at various places in the paper. However,
for even the most basic quantitative information about the sound field, there is no escape from meticulous
analysis of the integral for the pressure. The physics of the sound generation process is buried deep within
the phase relations represented by this integral, and no method other than careful mathematical analysis
has yet been found for calculating the complete details of sound generation by a gust striking a sharp leading
edge.

The sound field generated at the leading edge is diffracted by the trailing edge and side edges, to give a total
sound field with in general a multi-lobed far-field directivity pattern. This diffraction process involves the
conversion of one sound field into another sound field or into vorticity. The present paper is concerned
exclusively with a different process, namely the generation of a sound field from a source which is not acoustic
at all, namely vorticity in a mean flow. Therefore the paper does not analyse trailing-edge and side-edge
diffraction, or the resulting multi-lobed directivity patterns. Instead, the paper provides a basic building block,
namely the three-dimensional and temporal structure of the acoustic field propagating away from the leading
edge. With the aid of this building block, a complete directivity pattern, possibly containing many lobes, can
be constructed from first principles.

Section 2 of this paper gives the analytical solution in its most general form, and describes two-dimensional
single-frequency and impulsive sesquipoles. Sections 3 and 4 describe the corresponding three-dimensional
sesquipoles, expressing the results in terms of three ‘edgelet functions’, denoted E1, E2, and E3. Section 5
describes some smoother sesquipole fields, constructed from sources whose strength has a Gaussian or top-hat
profile in time or along the span. Section 6 outlines further work.

2. Leading-edge noise

2.1. General results

The system to be investigated is sketched in Fig. 1, which shows a horizontal flat-plate aerofoil at zero
angle of incidence in a uniform horizontal free stream of air at speed U. The speed of sound in the air is c0,
and the Mach number of the flow is M ¼ U=c0. The flow is assumed subsonic, i.e. Mo1. Cartesian
coordinates are chosen so that the origin O is on the leading edge of the aerofoil, the free-stream flow is in the
x direction, and the leading edge is the z-axis. The plate occupies the half of the Oxz plane specified by x40,
and the vertical direction is Oy. Corresponding cylindrical and spherical coordinates are ðr;f; zÞ and ðR; y;fÞ
as indicated. Final results will be expressed in terms of aeroacoustic coordinates ðx̄; ȳ; z̄Þ defined by
x̄ ¼ x=ð1�M2Þ, ȳ ¼ y=ð1�M2Þ

1=2, z̄ ¼ z=ð1�M2Þ
1=2. Corresponding polar coordinates ðr̄; f̄; z̄Þ and ðR̄; ȳ; f̄Þ
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Fig. 1. Flat-plate aerofoil in a uniform flow of speed U; coordinate systems are ðx; y; zÞ, ðr;f; zÞ, and ðR; y;fÞ. The aerofoil occupies the

half-plane y ¼ 0;xX0 (i.e. f ¼ 0), and its leading edge is the z-axis (i.e. y ¼ 0; p).
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are defined by

ðr̄; tan f̄Þ ¼ ðx̄2 þ ȳ2Þ
1=2;

ȳ

x̄

� �
; ðR̄; tan ȳÞ ¼ ðr̄2 þ z̄2Þ1=2;

r̄

z̄

� �
. (1)

All formulae for leading-edge noise contain a factor cos 1
2
f̄. This is a distinctive feature of a sesquipole field,

because a monopole field would not contain a trigonometric factor, whereas a dipole field would contain a
factor such as cos f̄.

A small-amplitude convected gust is now superposed on the uniform flow. On inviscid linear theory, the
interaction of the gust with the plate occurs only through the vertical component of the gust velocity in the
horizontal plane y ¼ 0. This component, the upwash, has the functional form f ðt� x=U ; zÞ. Since the total
velocity has zero vertical component on the plate, the boundary-value problem for the acoustic field requires
the acoustic velocity on the plate to have vertical component �f ðt� x=U ; zÞ. Let the undisturbed air have
density r0. Then the acoustic velocity u and the acoustic pressure p may be expressed in terms of a potential
jðt;x; y; zÞ as

u ¼ =j; p ¼ �r0
q
qt
þU

q
qx

� �
j. (2)

The boundary-value problem for j, obtainable from linearised thin-aerofoil theory, is specified and solved in
Chapman [3]. Frequencies are represented by o, and wavenumbers conjugate to z by m. The convention for
Fourier transforms is

F ðo;mÞ ¼
Z 1
�1

Z 1
�1

f ðt; zÞeiðot�mzÞ dtdz, (3)

f ðt; zÞ ¼
1

4p2

Z 1
�1

Z 1
�1

F ðo;mÞe�iðot�mzÞ dodm. (4)

The principal result is that the acoustic pressure p is

p ¼
epi=4

4p5=2
r0c0M

3=2

1�M2

cos 1
2
f̄

sin1=2 ȳ

1

R̄
1=2

Z 1
�1

o
c0

� �1=2

e�ioðtþMx̄=c0Þ

�

Z
C

eiðoR̄=c0Þ cosðȳ�wÞ sin w

ð1þM sin wÞ1=2
F ðo; ð1�M2Þ

�1=2
ðo=c0Þ cos wÞdwdo. ð5Þ

Full details of contours of integration, together with numerous diagrams, are given in Chapman [3].
The contour C is in the w plane, and the allowed contours C depend on o. The real part of a complex variable
is indicated by a subscript r, and the imaginary part by a subscript i, so that w ¼ wr þ iwi and o ¼ or þ ioi.
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When o is real and positive, one choice of C is the rectilinear path in the w plane from p� i1 to i1 via p and
0. When o is real and negative, the corresponding contour C in the w plane is from �i1 to pþ i1 via 0 and p.
The contour C may be deformed onto the steepest-descent path through the saddle point of the integrand at
w ¼ ȳ. The branch line of o1=2 is taken to run from 0 to �i1. When o is real and positive, so is o1=2. For
causality, the o contour from �1 to1 in Eq. (5) lies above o ¼ 0. The branch points of ð1þM sin wÞ1=2 are
at w ¼ ð2n� 1

2
Þp� i cosh�1ð1=MÞ, n ¼ 0;�1;�2; . . .; branch lines point away from the real w axis.

2.2. Analytic integrations

The upwash is taken to be the product of a longitudinal shape function f 0 and a transverse shape function g,
so that f ðt� x=U ; zÞ ¼ f 0ðt� x=UÞgðzÞ. The Fourier transform of f when x ¼ 0 is F ðo;mÞ ¼ F 0ðoÞGðmÞ
where

F 0ðoÞ ¼
Z 1
�1

f 0ðtÞe
iot dt; GðmÞ ¼

Z 1
�1

gðzÞe�imz dz. (6)

For example, let gðzÞ ¼ 1, so that there is no dependence, in the gust or field, on the span coordinate z, i.e. the
field is two-dimensional. Then GðmÞ ¼ 2pdðmÞ and F ðo;mÞ ¼ 2pF0ðoÞdðmÞ. In Eq. (5) the w integration may
be performed analytically to give

p ¼ �
epi=4

2p3=2
r0c

3=2
0 M3=2

ð1�M2Þ
1=2
ð1þMÞ1=2

cos 1
2
f̄

r̄1=2

Z 1
�1

o�1=2e�ioðtþMx̄=c0�r̄=c0ÞF0ðoÞdo. (7)

The amplitude factor r̄�1=2 in Eq. (7) is characteristic of cylindrical spreading in a two-dimensional sound field.
Contour plots of pressure often contain alternating ridges of high pressure and valleys of low pressure,
forming wavefronts. To describe these, it is convenient to introduce a wavefront coordinate r̄0 defined so that
the phase in Eq. (7) contains the factor t� r̄0=c0. Thus r̄0 ¼ r̄�Mx̄ ¼ ð1�M cos f̄Þr̄, and Eq. (7) contains

tþ
Mx̄

c0
�

r̄

c0
¼ t�

r̄0

c0
;

cos 1
2 f̄

r̄1=2
¼
ð1�M cos f̄Þ1=2 cos 1

2 f̄

r̄01=2
. (8)

The directivity factor, i.e. the factor containing f̄, naturally depends on which radial variable is held constant.
On a wavefront, specified at a given time by constant r̄0, the relevant directivity factor is that on the right-hand
side of Eq. (8)2, i.e. is ð1�M cos f̄Þ1=2 cos 1

2
f̄. On physical grounds, in the two-dimensional field given by

Eq. (7) a wavefront must, in the variables ðx; y; zÞ, lie on the surface of a cylinder expanding at the speed of
sound c0 and simultaneously be convected with the mean flow at speed U. This is confirmed by the identity
r̄02 ¼ ðx�Mr̄0Þ2 þ y2, so that surfaces of constant r̄0 are cylinders, and the value r̄0 ¼ c0t gives ðc0tÞ2 ¼

ðx�UtÞ2 þ y2. Equivalently, r̄0=c0 is the acoustic propagation time, in the mean flow, from the point ð0; 0; zÞ
on the leading edge to the point ðx; y; zÞ.

As a second example involving Eq. (6), let f 0ðt� x=UÞ ¼ v0e
�io0ðt�x=UÞ, where v0 is a vertical component of

velocity and o0 is a frequency, and let gðzÞ be arbitrary; i.e. the upwash and field contain the single frequency
o0. Then F 0ðoÞ ¼ 2pv0dðo� o0Þ and F ðo;mÞ ¼ 2p0dðo� o0ÞGðmÞ. The o integration in Eq. (5) may be
performed analytically to give

p ¼
epi=4

2p3=2
r0c0v0M

3=2

1�M2

cos 1
2
f̄

sin1=2 ȳ

o0

c0R̄

� �1=2

e�io0ðtþMx̄=c0Þ

�

Z
C

eiðo0R̄=c0Þ cosðȳ�wÞ sin w

ð1þM sin wÞ1=2
Gðð1�M2Þ

�1=2
ðo0=c0Þ cos wÞdw. ð9Þ

If o0 is real and positive, one choice of C is from p� i1 to i1.

2.3. The far field

When joR̄=c0jb1, the dominant contribution to the w integral in expression (5) for the acoustic pressure p

comes from the neighbourhood of the saddle point w ¼ ȳ. Standard theory then shows that a simple far-field
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approximation to the acoustic pressure, uniform in the polar angle ȳ from the leading edge, is

p ’ �
1

23=2p2
r0c0M

3=2

1�M2

sin1=2 ȳ cos 1
2
f̄

ð1þM sin ȳÞ1=2
1

R̄

Z 1
�1

e�ioðtþMx̄=c0�R̄=c0Þ

� 1þ
iM

2 sin ȳ
c0

oR̄

� �
F ðo; ð1�M2Þ

�1=2
ðo=c0Þ cos ȳÞdo. ð10Þ

The second term in braces is needed when ȳ is close to 0 or p, i.e. when the observation point is close to the
leading edge. The amplitude factor R̄

�1
in Eq. (10) is characteristic of spherical spreading in a three-

dimensional sound field. The corresponding wavefront coordinate R̄
0
, for which the phase term contains the

factor t� R̄
0
=c0, is R̄

0
¼ R̄�Mx̄ ¼ ð1�M sin ȳ cos f̄ÞR̄. Then Eq. (10) contains the directivity and amplitude

factor

ð1�M sin ȳ cos f̄Þsin1=2 ȳ cos 1
2
f̄

ð1þM sin ȳÞ1=2
1

R̄
0 . (11)

The directivity contains also a factor dependent on cos ȳ, arising from the term in cos ȳ in the integrand of
Eq. (10). Thus the directivity is rather complex. This is to be expected, because the two special directions in the
problem, namely that of the mean flow and that of the leading edge, inevitably make the sound field highly
anisotropic. In the variables ðx; y; zÞ, a wavefront lies on the surface of a sphere expanding at the speed
of sound c0 and simultaneously convected with the mean flow at speed U. The wavefront coordinate R̄

0

satisfies the identity R̄
02
¼ ðx�MR̄

0
Þ
2
þ y2 þ z2, so that surfaces of constant R̄

0
are spheres, and the value

R̄
0
¼ c0t gives ðc0tÞ

2
¼ ðx�UtÞ2 þ y2 þ z2. That is, R̄

0
=c0 is the acoustic propagation time, in the mean flow,

from ð0; 0; 0Þ to ðx; y; zÞ. For brevity, most fields will be written in terms of R̄ or r̄, but converted to R̄
0
or r̄0 in

the discussion of directivity patterns.

2.4. Explicit far fields

Eq. (10) shows that the far acoustic field is always given by a single integral. The second term in braces in
Eq. (10) will now be ignored, i.e. it will be assumed that the observation point is not too close to the leading
edge. For three types of gust, each involving an arbitrary function, the resulting integral may be evaluated
explicitly. The first type is the single-frequency gust, referred to above, for which the upwash is
v0e
�io0ðt�x=UÞgðzÞ. Then F ðo;mÞ ¼ 2pv0dðo� o0ÞGðmÞ, and Eq. (10) gives

p ’
�1

21=2p

r0c0v0M
3=2

1�M2

sin1=2 ȳ cos 1
2
f̄

ð1þM sin ȳÞ1=2
1

R̄
e�io0ðtþMx̄=c0�R̄=c0ÞGðð1�M2Þ

�1=2
ðo0=c0Þ cos ȳÞ. (12)

The second type is an impulsive gust for which the upwash is v0dððt� x=UÞ=tÞgðzÞ, whence F ðo;mÞ ¼ v0tGðmÞ.
Then

p ’
�1

21=2p
r0c0v̄0M

3=2 sin1=2 ȳ cos 1
2 f̄

ð1þM sin ȳÞ1=2
c0t

R̄j cos ȳj
g
�ð1�M2Þ

1=2c0ðtþMx̄=c0 � R̄=c0Þ

cos ȳ

 !
. (13)

Here v̄0 ¼ v0=ð1�M2Þ
1=2. The third type is a gust with upwash f 0ðt� x=UÞdðz=aÞ, where f 0 is arbitrary. This

gust is localised to a single span position z ¼ 0. Thus F ðo;mÞ ¼ aF 0ðoÞ, and Eq. (10) gives

p ’
�1

21=2p

r0c0M
3=2

ð1�M2Þ
1=2

sin1=2 ȳ cos 1
2
f̄

ð1þM sin ȳÞ1=2
ā

R̄
f 0ðtþMx̄=c0 � R̄=c0Þ. (14)

Here ā ¼ a=ð1�M2Þ
1=2. Hence for a gust localised to a single span position, the time-history of the sound

pressure at a fixed far-field observation point is proportional to the upwash at that span position, after
allowing for the acoustic propagation time R̄=c0 �Mx̄=c0, i.e. R̄

0
=c0, in the uniform flow. At fixed wavefront

coordinate R̄
0
, the directivities in Eqs. (12)–(14) contain an extra factor 1�M sin ȳ cos f̄, as in Eq. (11). Far-

field approximations of the type in Eq. (14) are accurate as close as one or two wavelengths from the source
position. Thus Eq. (14) is immediately useful in providing the incident sound field required for calculating the
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diffraction of the leading-edge sound field by the trailing edge and side edges, provided that the frequency is
not too low.

2.5. Basic sesquipoles

Four basic fields are obtained from gusts in which the transverse shape function gðzÞ is 1 or dðz=aÞ and the
longitudinal shape function f 0ðt� x=UÞ is v0e

�io0ðt�x=UÞ or v0dððt� x=UÞ=tÞ. These fields are of type (i) two-
dimensional single-frequency, (ii) two-dimensional impulsive, (iii) three-dimensional single-frequency, and (iv)
three-dimensional impulsive, and are the four basic sesquipoles.

For the two-dimensional single-frequency sesquipole, the upwash is v0e
�io0ðt�x=UÞ, and the pressure field p is

given by Eq. (7) with F0ðoÞ ¼ 2pv0dðo� o0Þ, i.e.

p ¼ �
epi=4

p1=2
r0c0v̄0M

3=2

ð1þMÞ1=2
ðcos

1

2
f̄Þ

c0

o0r̄

� �1=2

e�io0ðtþMx̄=c0�r̄=c0Þ (15)

([4], Eq. 14). At fixed wavefront coordinate r̄0, the directivity is ð1�M cos f̄Þ1=2 cos 1
2
f̄.

For the two-dimensional impulsive sesquipole, the upwash is v0dððt� x=UÞ=tÞ, and the pressure field p is
given by Eq. (7) with F0ðoÞ ¼ v0t. Evaluation of the integral gives

p ¼ �
1

p
r0c0v̄0M

3=2

ð1þMÞ1=2
cos

1

2
f̄

� �
t

H0ðtþMx̄=c0 � r̄=c0Þ

fðr̄=c0ÞðtþMx̄=c0 � r̄=c0Þg
1=2

, (16)

which in the wavefront coordinate r̄0 is proportional to ð1�M cos f̄Þ1=2ðcos 1
2
f̄Þfr̄0ðt� r̄0=c0Þg

�1=2H0ðt� r̄0=c0Þ.
Here H0 is the Heaviside function, 0 for negative argument and 1 for positive argument. Thus the sound field
given by Eq. (16) is confined to the interior of the convected expanding cylinder bounded by the wavefront
surface r̄0 ¼ c0t. Expression (16) evaluated on the aerofoil surface, i.e. for f̄ ¼ 0 and 2p, is given in Amiet [5a,b];
but the full expression (16), containing the factor cos 1

2
f̄, appears to be new. As there is no length scale in the

formulation of the problem, Eq. (16) may be written in terms of similarity variables x̄=ðc0tÞ and r̄=ðc0tÞ; in these
variables, p contains a factor r0c0v̄0t=t. This factor gives the scaling law for the time variation of the acoustic
pressure at fixed proportional distance from the leading edge to the wavefront r̄0 ¼ c0t.

3. The three-dimensional single-frequency sesquipole

3.1. The edgelet function E1

The upwash is now v0e
�io0ðt�x=UÞdðz=aÞ, so that GðmÞ ¼ a and F ðo;mÞ ¼ 2pv0dðo� o0Þ. Then Eq. (5) or

Eq. (9) gives

p ¼
e�pi=4

2p1=2
r0c0v̄0M

3=2 cos
1
2 f̄

sin1=2 ȳ
ā

o0

c0R̄

� �1=2

e�io0ðtþMx̄=c0ÞE1, (17)

where

E1 ¼ E1ðo0R̄=c0; ȳ;MÞ ¼
i

p

Z
C

eiðo0R̄=c0Þ cosðȳ�wÞ sin w

ð1þM sin wÞ1=2
dw. (18)

The contour C is specified after Eqs. (5) and (9). The right-hand side of Eq. (18) cannot in general be evaluated
in terms of known functions, and defines a new function, here named E1 to suggest ‘edge’ or ‘edgelet’. When
M ¼ 0, the integral in Eq. (18) reduces to a multiple of ðsin ȳÞH ð1Þ1 ðo0R̄=c0Þ, where H

ð1Þ
1 is the Hankel function

of the first kind of order 1; the factor i=p in Eq. (18) has been chosen so that in E1 the multiple is unity, i.e.

E1ðo0R̄=c0; ȳ; 0Þ ¼ ðsin ȳÞH
ð1Þ
1 ðo0R̄=c0Þ. (19)

Thus in Eq. (17), when M51 the pressure p becomes proportional to sin1=2 ȳ. In this limit, ðR̄; ȳ; f̄Þ tends to
ðR; y;fÞ, and Eq. (17) is consistent with the fact that

R�1=2H
ð1Þ
1 ðo0R=c0Þðsin

1=2 yÞðcos 1
2
fÞe�io0t (20)
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is a separable solution of the wave equation. All the results below have been checked by comparing their
limiting form when M51 with the corresponding results obtained by using Eq. (19) at the outset.

A rapid numerical method of evaluating E1 is to take the contour C to be the steepest-descent path through
the saddle point w ¼ ȳ of cosðȳ� wÞ. It will be assumed that o0 is real and positive. Then the steepest-descent
path extends from w ¼ ȳþ 1

2
p� i1 to w ¼ ȳ� 1

2
pþ i1 and has equation cosðȳ� wrÞ cosh wi ¼ 1, i.e.

wi ¼ sgnðȳ� wrÞcosh
�1
ðsecðȳ� wrÞÞ ðȳ�

1
2
powroȳþ 1

2
pÞ. (21)

In Eq. (18) this gives

w ¼ wr þ i sgnðȳ� wrÞcosh
�1
fsecðȳ� wrÞg; dw ¼ f1� i secðȳ� wrÞgdwr, (22)

so that

E1 ¼ �
i

p

Z ȳþð1=2Þp

ȳ�ð1=2Þp

eiðo0R̄=c0Þ cosðȳ�wÞ sin w

ð1þM sin wÞ1=2
f1� i secðȳ� wrÞgdwr. (23)

Here w is the function of wr specified by Eq. (22)1; the sign change between Eqs. (18) and (23) occurs because
the direction of C is from ȳþ 1

2
p to ȳ� 1

2
p. Numerical evaluation of E1 using the steepest-descent integral

Eq. (23) is almost instantaneous, because of the decay of the integrand away from w ¼ ȳ. In this way E1 was
evaluated numerically for many values of o0R̄=c0, ȳ, and M, and the results were examined as contour plots of
the real and imaginary parts E1r and E1i in a dimensionless meridional plane ðZ̄; X̄ Þ through the leading edge,
where Z̄ ¼ ðo0R̄=c0Þ cos ȳ, X̄ ¼ ðo0R̄=c0Þ sin ȳ. Two advantages of such plots over simple directivity plots are
first that they show the phase structure of the field, and second that they emphasise the difference in form
between the near and far field, and the sharp transition between them. A typical result is shown in Fig. 2,
which gives contour plots of E1r and E1i for M ¼ 0:8. The figure shows clearly the transition from the near
field to the far field at values of o0R̄=c0 of about 1 or 2. In this figure, ȳ is the polar angle from the Z̄ axis,
i.e. from the leading edge. Thus the figure shows the directivity of E1, revealing the maximum in the positive
X̄ direction.

The far-field approximation to E1, uniform in the polar angle ȳ, is

E1 ’
2

p

� �1=2
sin ȳ

ð1þM sin ȳÞ1=2
1þ

iM

2 sin ȳ
c0

o0R̄

� �
c0

o0R̄

� �1=2

eiðo0R̄=c0�3p=4Þ. (24)

Thus the dominant term is of order R̄
�1=2

, except along the leading edge, ȳ ¼ 0 or p, where the dominant term

is of order R̄
�3=2

. An alternative to Eq. (24), equivalent to it in the displayed powers of R̄, is obtained from the

standard large-argument approximation to the Hankel function H
ð1Þ
1 ðo0R̄=c0Þ by eliminating the common

term eio0R̄=c0 from this Hankel-function approximation and Eq. (24). The result is

E1 ’
sin ȳ

ð1þM sin ȳÞ1=2
1þ

iM

2 sin ȳ
c0

o0R̄

� �
H
ð1Þ
1 ðo0R̄=c0Þ. (25)

An advantage of Eq. (25) over Eq. (24) is that Eq. (25) is exact when M ¼ 0, i.e. is then no longer simply a far-
field approximation. Fig. 3 compares the exact values of E1r and E1i, given by Eq. (23), with the far-field

approximations Eqs. (24) and (25), for M ¼ 0:8. In the free-stream direction, ȳ ¼ 1
2
p, the approximations are

good when o0R̄=c0X2; along the leading edge, ȳ ¼ 0 or p, they are good when o0R̄=c0X3.

3.2. The acoustic field

Because the function E1 is so easy to compute from Eq. (23), contour plots of the acoustic pressure p are
readily obtained from Eq. (17). It is convenient to work with the scaled acoustic pressure P1, defined by
p ¼ r0c0v̄0M3=2ðo0ā=c0ÞP1, so that

P1 ¼
e�pi=4

2p1=2
cos 1

2
f̄

sin1=2 ȳ

c0

o0R̄

� �1=2

e�io0ðtþMx̄=c0ÞE1. (26)
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Contour plots of P1r and P1i in the half-plane f̄ ¼ 0 at time t ¼ 0 for M ¼ 0:8 are shown in Fig. 4, and may be
contrasted with the contour plots of E1r and E1i in Fig. 2. The free-stream direction ȳ ¼ p=2 is a local
minimum of the amplitude of P1r and P2i, but a local maximum of the amplitude of E1r and E1i. The
explanation lies not only in the term sin1=2 ȳ in the denominator in Eq. (26), which produces a singularity in P1r

and P1i on the leading edge ȳ ¼ 0;p, but also in the phase term expð�io0ðtþMx̄=c0ÞÞ. To see this, note that,
from Eqs. (24) and (26), the far-field approximation to the scaled acoustic pressure is

P1 ’ �
1

21=2p

sin1=2 ȳ cos 1
2
f̄

ð1þM sin ȳÞ1=2
1þ

iM

2 sin ȳ
c0

o0R̄

� �
c0

o0R̄
e�io0ðtþMx̄=c0�R̄=c0Þ. (27)

A curved ridge or valley in P1r or P1i corresponds to a fixed value of o0ðR̄=c0 �Mx̄=c0Þ, i.e. o0R̄
0
=c0, where R̄

0

is the wavefront coordinate defined before Eq. (11). In terms of R̄
0
, the leading term of the far-field
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approximation Eq. (27) is

P1 ’ �
1

21=2p

ð1�M sin ȳ cos f̄Þsin1=2 ȳ cos 1
2
f̄

ð1þM sin ȳÞ1=2
c0

o0R̄
0 e
�io0ðt�R̄

0
=c0Þ. (28)

Therefore the visible pattern of P1r and P1i in Fig. 4 is described by the directivity function

D ¼ DðȳÞ ¼
ð1�M sin ȳ cos f̄Þsin1=2 ȳ

ð1þM sin ȳÞ1=2
, (29)

in which f̄ and M are parameters. The factor cos 1
2
f̄ in Eq. (28) is a constant of proportionality in contour

plots at fixed f̄, and so is not needed in Eq. (29). The derivative D0ðȳÞ is zero when ȳ ¼ 1
2
p and when

cos f̄ ¼
1

M sin ȳ ð3þ 2M sin ȳÞ
. (30)

Since 0pȳpp, i.e. sin ȳX0, it follows that Eq. (30) can be satisfied only for cos f̄40, and that the relevant
solution sin ȳ of Eq. (30) is then

sin ȳ ¼
ð9þ 8 sec f̄Þ1=2 � 3

4M
. (31)

When Mp 1
4
ð171=2 � 3Þ ¼ 0:28078, the directivity function DðȳÞ has a single maximum, ð1�M cos f̄Þ=

ð1þMÞ1=2, attained at ȳ ¼ 1
2
p. When M4 1

4
ð171=2 � 3Þ, the number and location of the maxima depend on f̄:
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for cos f̄p1=fMð3þ 2MÞg there is a single maximum, still at ȳ ¼ 1
2p, but for cos f̄41=fMð3þ 2MÞg there are

two maxima, attained at the two values of ȳ satisfying Eq. (31), and there is now a minimum at ȳ ¼ 1
2
p.

Hence the directivity pattern undergoes a bifurcation from single-lobed to double-lobed as cos f̄ increases
through 1=fMð3þ 2MÞg, or equivalently as M increases through 1

4
fð9þ 8 sec f̄Þ1=2 � 3g. The bifurcation is

associated with the local maximum in DðȳÞ at ȳ ¼ 1
2
p undergoing a transition to a local minimum. For the

double-lobed pattern, Eq. (31) shows that as cos f̄ increases from 1=fMð3þ 2MÞg to 1, the value of sin ȳ at
which the maximum is attained decreases from 1 to 1

4
ð171=2 � 3Þ=M; the value of D at each maximum is

obtained by substituting Eq. (31) into Eq. (29).
In the special case cos f̄ ¼ 1, corresponding to observer positions on the blade surface, the directivity

pattern is single-lobed for Mp 1
4
ð171=2 � 3Þ ¼ 0:28078 and double-lobed for M4 1

4
ð171=2 � 3Þ; in the latter

case the lobe directions are given by sin ȳ ¼ 1
4
ð171=2 � 3Þ=M. For f̄ ¼ 0 and M ¼ 0:8, this gives



ARTICLE IN PRESS
C.J. Chapman / Journal of Sound and Vibration 300 (2007) 1015–1033 1025
sin ȳ ¼ 5
16
ð171=2 � 3Þ ¼ 0:35097, i.e. ȳ ¼ 20:55�; 159:45�. Lines at these angles are superposed on the contour

plots of P1r and P1i in Fig. 4; they agree perfectly with the positions of the two lobes.
The directivity analysis based on Eqs. (28)–(31) does not apply when sin ȳ is smaller than order ðo0R̄=c0Þ

�1,
or equivalently when o0r̄=c0 is smaller than order one. For observation points as close as this to the leading
edge, the second term in braces in Eq. (27) is important, and at fixed R̄ the pressure tends to infinity like
sin�1=2ȳ, or equivalently like r̄�1=2, as the leading edge is approached. This pressure singularity is associated
with effectively incompressible flow around the sharp leading edge, i.e. with a ‘leading-edge near field’,
extending arbitrarily far along the edge from the source of the sound.

4. The three-dimensional impulsive sesquipole

4.1. The edgelet functions E2 and E3

The upwash is now taken to be v0dððt� x=UÞ=tÞdðz=aÞ. The resulting sound field lies within a convected
expanding sphere, generated with radius zero at the origin on the leading edge at time t ¼ 0, and then
expanding at the speed of sound. The surface of the sphere is the wavefront; outside the sphere there is no
sound, and inside the sphere, behind the wavefront, there is a tail acoustic field. A normalised time T is defined
so that at any point in space the wavefront arrives at time T ¼ 1, and similarly a normalised radial coordinate
R̄n is defined so that the wavefront is always at R̄n ¼ 1. Convenient definitions are

T ¼
c0tþMx̄

R̄
; R̄n ¼

R̄

c0tþMx̄
¼

1

T
. (32)

Thus for all observer positions there is silence for To1, a wavefront arrival at T ¼ 1, and a tail for T41; and for all
positive times, there is silence for R̄n41, a wavefront on R̄n ¼ 1, and a tail for R̄no1. Inversion of Eq. (32) gives

R̄ ¼
c0tR̄n

1�MR̄n sin ȳ cos f̄
, (33)

so that the wavefront surface R̄n ¼ 1 is R̄ ¼ c0t=ð1�M sin ȳ cos f̄Þ: The identity 1� R̄n ¼ ðc0t� R̄
0
Þ=ðc0tþMx̄Þ

shows that the wavefront surface R̄n ¼ 1 is the same as the wavefront surface R̄
0
¼ c0t defined at the end of

Section 2.3; but the formulae below are expressed more simply in terms of R̄n than R̄
0
=ðc0tÞ. For the impulsive

problem being considered, the concept of a wavefront is well-defined only at the surface of the expanding
sphere R̄n ¼ 1, and not, for example, in its interior R̄no1.

Because there is no length scale in the formulation of the problem (the quantity a is part of a gust-strength
factor v0at), all formulae relating to the three-dimensional impulsive sesquipole may be written in similarity
coordinates X̄ s ¼ x̄=ðc0tÞ, Ȳ s ¼ ȳ=ðc0tÞ, Z̄s ¼ z̄=ðc0tÞ, R̄s ¼ R̄=ðc0tÞ. Thus

R̄n ¼
R̄s

1þMX̄ s

¼
R̄s

1þMR̄s sin ȳ cos f̄
. (34)

Surfaces of fixed R̄n are the ellipsoids

ð1�M2R̄
2
nÞ X̄ s �

MR̄
2
n

1�M2R̄
2
n

 !2

þ Ȳ
2
s þ Z̄

2
s ¼

R̄
2
n

1�M2R̄
2
n

. (35)

In the untransformed variables ðx=ðc0tÞ; y=ðc0tÞ; z=ðc0tÞÞ or ðx; y; zÞ these ellipsoids become spherical in the limit
R̄n ! 1; and when R̄n ¼ 1 they are the spheres ðc0tÞ2 ¼ ðx�UtÞ2 þ y2 þ z2. In the variables (X̄ s; Ȳ s; Z̄sÞ or
ðx̄; ȳ; z̄Þ the ellipsoids become spherical in the opposite limit R̄n ! 0. By contrast, the surfaces of fixed R̄

0
used in

Section 3.2 for the far field of the single-frequency sesquipole are spheres in the untransformed variables for all R̄
0
.

The pressure field is given by Eq. (5) with F ðo;mÞ ¼ v0at. In terms of the dimensionless frequency variable
O ¼ oR̄=c0, this gives

p ¼
e�pi=4

4p3=2
r0c0v̄0M

3=2 cos
1
2
f̄

sin1=2 ȳ

c0tā

R̄
2

Z 1
�1

O1=2e�iOT E1ðO; ȳ;MÞdO. (36)
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Here E1 is the edgelet function given by Eq. (18). When T41, i.e. R̄no1, the O contour in Eq. (36) may be
deformed downwards and wrapped around the negative imaginary O axis. The O integration may then be
performed analytically at fixed w, and the remaining w integral converted to a loop integral around two branch
points of ð1þM sin wÞ�1=2 in the w plane. Simplifying gives

p ¼ �
1

2p2
r0c0v̄0M3=2 cos

1
2
f̄

sin1=2 ȳ

c0tā

R̄
2

R̄
3=2
n E2 ðR̄no1Þ, (37)

where

E2 ¼ E2ðR̄n; ȳ;MÞ ¼ Re

Z wM

0

cosh wi
ð1�M cosh wiÞ

1=2

dwi
f1þ R̄n sinðȳ� iwiÞg

3=2
. (38)

Here Re denotes the real part, and wM ¼ cosh�1ð1=MÞ. The value of the three-halves fractional power in the
denominator is chosen to be real and positive when the argument is real and positive, and elsewhere is
determined by analytic continuation. Eq. (37) is suited to describing the pressure distribution in space at a
given time. To describe the pressure history at a given point in space, a more convenient expression is

p ¼ �
1

2p2
r0c0v̄0M

3=2 cos
1
2
f̄

sin1=2 ȳ

c0tā

R̄
2

E3 ðT41Þ, (39)

where

E3 ¼ E3ðT ; ȳ;MÞ ¼ Re

Z wM

0

cosh wi
ð1�M cosh wiÞ

1=2

dwi
fT þ sinðȳ� iwiÞg

3=2
. (40)

Since T ¼ R̄
�1
n , the edgelet functions E2 and E3 are related by

E3ðT ; ȳ;MÞ ¼ R̄
3=2
n E2ðR̄n; ȳ;MÞ; E2ðR̄n; ȳ;MÞ ¼ T3=2E3ðT ; ȳ;MÞ. (41)

Representation (36) is well suited to describing the field near the wavefront for any M, and to describing the
whole field in the low Mach-number limit M ! 0. Representations (37) and (39) do not capture the delta
function in the pressure field at the wavefront, but are well suited to describing all other aspects of the pressure
field. Eq. (34) shows that R̄n, and hence T, are functions of the similarity variables X̄ s; R̄s. In these variables,
the above formulae for p contain a factor r0v̄0āt=t2, in which c0 has cancelled out. This factor gives the scaling
law for the time variation of the pressure at a fixed proportional distance from the source position to the
wavefront.

4.2. The wavefront expansion

It will now be shown that Eq. (36) leads to an expansion

p ¼ p0 þ p1 þ p2 þ � � � , (42)

in which p0 gives the delta-function contribution to the pressure at the wavefront, p1 gives the pressure
immediately behind the wavefront, p2 gives the rate of change of the pressure (in space or time) immediately
behind the wavefront, and so on. Thus p with the term p0 omitted gives the Taylor expansion, about the
wavefront, of the field behind it. The terms in Eq. (42) are

p0 ¼ �
1

21=2p
r0c0v̄0M

3=2ðcos
1

2
f̄Þ

sin1=2 ȳ

ð1þM sin ȳÞ1=2
ā

R̄
dððtþMx̄=c0 � R̄=c0Þ=tÞ, (43)

p1 ¼ �
1

27=2p
r0c0v̄0M3=2ðcos

1

2
f̄Þ

4M þ ð3þM2Þ sin ȳ

ð1þM sin ȳÞ5=2sin1=2 ȳ

c0tā

R̄
2

H0ðtþMx̄=c0 � R̄=c0Þ, (44)

p2 ¼
1

21=2p
r0c0v̄0M

3=2ðcos
1

2
f̄Þ

h2ðȳ;MÞ

sin1=2 ȳ

c0tā

R̄
2

c0tþMx̄

R̄
� 1

����
����H0ðtþMx̄=c0 � R̄=c0Þ. (45)
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These expressions may be written in terms of the normalised radial coordinate R̄n by means of Eq. (33), and
the directivities at fixed R̄n readily obtained. On the wavefront itself, i.e. for R̄n ¼ 1, it was seen after Eq. (33)
that R̄ ¼ c0t=ð1�M sin ȳ cos f̄Þ; thus p0 contains a factor 1�M sin ȳ cos f̄ and p0; p1; . . . contain the factor
ð1�M sin ȳ cos f̄Þ2.

To derive Eqs. (43)–(45) from Eq. (36), and determine h2ðy;MÞ, the starting point is the asymptotic
expansion, for large jOj, of E1. By an extension of Eq. (24), this is

E1ðO; ȳ;MÞ�
2

pO

� �1=2

eiðO�3p=4Þ h0 þ
ih1

O
þ

h2

O2
þ � � �

� �
, (46)

where

h0 ¼ G; h1 ¼ �ð
1
8
G þ 1

2
G00Þ; h2 ¼ �ð

9
128

G þ 5
16

G00 þ 1
8
GðivÞÞ, (47)

and

G ¼ Gðȳ;MÞ ¼
sin ȳ

ð1þM sin ȳÞ1=2
, (48)

in which the dashes on G indicate differentiation with respect to ȳ. Thus h0, h1, h2; . . . are determined as
functions of ȳ and M. Term-by-term integration of Eq. (36) then gives Eqs. (42)–(45); the factor e�iOðT�1Þ in
the integrand shows that p ¼ 0 when To1, as known already. In the derivation of this wavefront expansion,
there is nowhere a far-field approximation. Hence no matter how close the observation point is to the origin,
the arrival of the acoustic field is marked by the delta-function term p0 in the pressure, exactly. Similar
remarks apply to p1, p2; . . ., which give exact values of the pressure field, its slope, etc., immediately after the
wavefront has passed an observation point. Somewhat behind the wavefront, p1 þ p2 gives an approximation
to the pressure, which can be steadily improved by inclusion of further terms p3, p4; . . . .

The terms p1, p2; . . . are proportional to R̄
�2
, not R̄

�1
, i.e. give that part of the field which does not transport

acoustic energy to infinity. Thus if the direct far field only is of interest, then p1, p2; . . . may be ignored, and the
entire field may be regarded as given by p0, i.e. by the delta-function contribution with its spreading factor
R̄
�1
. Nevertheless, near-field scattering of p1, p2; . . . by, for example, corners and side edges of a fan blade, will

lead to p1, p2; . . . providing an indirect contribution to the far field which could be considerable.
An alternative approach to the wavefront expansion is via Eq. (37) or Eq. (39), involving the edgelet

functions E2 or E3. Thus, E2ðR̄n; ȳ;MÞ and all its derivatives with respect to R̄n may be evaluated analytically
for R̄n ¼ 1; and similarly for E3ðT ; ȳ;MÞ and its derivatives with respect to T for T ¼ 1. For example
(cf. Eq. (44))

E2ð1; ȳ;MÞ ¼
p

25=2
4M þ ð3þM2Þ sin ȳ

ð1þM sin ȳÞ5=2
. (49)

This leads to p1, p2; . . . , but not to p0; i.e. as indicated at the end of Section 4.1, E2 and E3 do not capture the
delta function in the pressure at the wavefront. The reason is that E2 and E3 are well-defined, i.e. convergent,
on each side of the wavefront, and give the analytical continuation, to the region ahead of the wavefront, of
the field behind the wavefront. This analytical continuation, being non-zero, is of no physical interest, because
ahead of the wavefront there is no acoustic field.

4.3. The tail

The edgelet integrals E2 and E3 can in principle be evaluated in terms of elliptic functions with complex
arguments, but the results are too unwieldy to be of use, at least for arbitrary ȳ and M. Instead, it is preferable
to evaluate the integrals numerically, and this is made especially rapid by a prior change of variable to
eliminate the singularity in the integrand. The result is

E2 ¼
2

M

� �1=2

Re

Z p=2

0

1þ ðð1�MÞ=MÞsin2 c

f1þ 1
2
ðð1�MÞ=MÞsin2 cg1=2

dc

f1þ R̄n sinðȳ� iwiÞg
3=2

(50)
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in which wi ¼ cosh�1ð1þ ðð1�MÞ=MÞsin2 cÞ; and E3 can be written similarly. In accordance with the remarks
at the end of Section 4.1, the scaled pressure P2 is defined by p ¼ ðr0v̄0āt=t2ÞM3=2P2. In the similarity variable
R̄s defined before Eq. (34), this gives

P2 ¼
�1

2p2
cos 1

2
f̄

sin1=2 ȳ

1

ð1þMR̄s sin ȳ cos f̄Þ
3=2

1

R̄
1=2
s

E2
R̄s

1þMR̄s sin ȳ cos f̄
; ȳ;M

� �
. (51)

For observer positions in the vertical plane through the source point, i.e. for ȳ ¼ 1
2
p, the edgelet integrals E2

and E3 can be evaluated analytically for all R̄n or T. The result is

E2 R̄n;
1

2
p;M

� �
¼

2

ð1þMÞ1=2ð1þ R̄nÞ
3=2

1þ R̄n

1� R̄n

EðkÞ

1� k2
� KðkÞ

� �
þ

EðkÞ

1� k2

� �
, (52)

where k ¼ fð1�MÞð1� R̄nÞ=ðð1þMÞð1þ R̄nÞÞg
1=2 and KðkÞ and EðkÞ are complete elliptic integrals of the

first and second kinds. These are given by

KðkÞ ¼

Z p=2

0

ð1� k2sin2 cÞ�1=2 dc ¼
1

2
pF

1

2
;
1

2
; 1; k2

� �
, (53)

EðkÞ ¼

Z p=2

0

ð1� k2sin2 cÞ1=2 dc ¼
1

2
pF �

1

2
;
1

2
; 1; k2

� �
, (54)

in which F denotes the hypergeometric function. Corresponding expressions for E3 are obtained from
Eq. (41), i.e., E3ðT ; 12p;MÞ ¼ T�3=2E2ðT

�1; 1
2
p;MÞ. Substitution of these expressions for E2 and E3 into

Eqs. (37) and (39) gives the acoustic field in the vertical plane ȳ ¼ 1
2
p. Taylor-series expansions of these

expressions in powers of 1� R̄n or T � 1 agree with Eqs. (44)–(45) evaluated at ȳ ¼ 1
2
p. In particular,

E2ð1; 12p;MÞ ¼ 2�5=2pð3þMÞ=ð1þMÞ3=2, from Eq. (49) or Eq. (52). The edgelet integrals do not simplify
for ȳ ¼ 0.

Contour plots of E2 and P2 for M ¼ 0:8 in the half-plane f̄ ¼ 0, i.e. on the upper surface of the blade, are
shown in Fig. 5(a,b); contours of R̄n are superposed. The polar angle from the Z̄-axis, i.e. from the leading
edge, is ȳ. Therefore the figure determines the directivity in ȳ of E2 and P2 for f̄ ¼ 0. Corresponding graphs of
E2 and P2 as functions of R̄n at fixed ȳ and as functions of ȳ at fixed R̄n are shown in Fig. 6(a–d). Plots in the
vertical plane ȳ ¼ 1

2
p are shown in Fig. 7(a,b), again with contours of R̄n superposed. Corresponding graphs of

P2 as a function of R̄n at fixed f̄ and as a function of f̄ at fixed R̄n are shown in Fig. 8(a,b).

4.4. The very near field

When R̄n51, the integrand of E2 may be approximated by the first few terms in its Taylor series in powers
of R̄n, and integrated term-by-term. The result is

E2 ¼
2ð1þMÞ1=2

M
EðkÞ �

M

1þM
KðkÞ

� �

�
2ð1þMÞ1=2

M2
ðsin ȳÞR̄n EðkÞ �

Mð2�MÞ

2ð1þMÞ
KðkÞ

� �
þ � � � , ð55Þ

where k ¼ fð1�MÞ=ð1þMÞg1=2. For ȳ ¼ 1
2
p, this agrees with the Taylor-series expansion of Eq. (52). Use of

Eq. (55) in Eq. (37) gives a near-field approximation to the acoustic pressure. The approximation is good up to
about R̄n ¼ 0:2. Equivalently, the relation E3ðT ; ȳ;MÞ ¼ T�3=2E2ðT

�1; ȳ;MÞ determines the large-time
behaviour of the pressure at a fixed observation point. The pressure decays in proportion to T�3=2.

4.5. The low Mach-number limit

When M51, the above formulae simplify, because Eq. (19) gives E1ðO; ȳ; 0Þ ¼ ðsin ȳÞH
ð1Þ
1 ðOÞ. The large jOj

expansion of E1 is then obtainable from that of H
ð1Þ
1 ðOÞ; this agrees with Eq. (46) for M ¼ 0. The value
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of E2ðR̄n; y; 0Þ is given by Eq. (38) with M ¼ 0; alternatively, the O integration described after Eq. (36) leads to

E2ðR̄n; ȳ; 0Þ ¼
2

p1=2
sin ȳ

R̄
3=2
n

Z 1
0

s1=2e�s=R̄n K1ðsÞds ðR̄no1Þ, (56)

in which K1 is the modified Bessel function of order 1. The s integral may be evaluated analytically, and the

result expressed in several equivalent ways, involving Legendre functions P�11=2ðR̄
�1
n Þ or Q�11=2ðð1� R̄

2
nÞ
�1=2
Þ, or

hypergeometric functions with argument 1� R̄
2
n or ð1� R̄nÞ=ð1þ R̄nÞ. The latter give

E2ðR̄n; ȳ; 0Þ ¼
3p sin ȳ

25=2R̄n

F
1

4
;
3

4
; 2; 1� R̄

2
n

� �
¼

3pR̄n sin ȳ

25=2
F

5

4
;
7

4
; 2; 1� R̄

2
n

� �

¼
3p sin ȳ

4R̄nð1þ R̄nÞ
1=2

F �
1

2
;
1

2
; 2;

1� R̄n

1þ R̄n

� �
¼

3pR̄n sin ȳ

ð1þ R̄nÞ
5=2

F
3

2
;
5

2
; 2;

1� R̄n

1þ R̄n

� �
. ð57Þ
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Then Eq. (41) gives similar expressions for E3ðT ; ȳ; 0Þ. These expressions evaluated at ȳ ¼ 1
2
p agree with

Eq. (52) evaluated at M ¼ 0. Expansion of Eq. (57) in powers of 1� R̄n leads to the wavefront expansion of

Section 4.2, evaluated for M ! 0; the leading term is E2ð1; ȳ; 0Þ ¼ ð3p=25=2Þ sin ȳ, and, for example,

h2ðȳ; 0Þ ¼ 15
128

sin ȳ. Near-field expansions of Eq. (56) or Eq. (57) for R̄n51 give

E2ðR̄n; ȳ; 0Þ ¼
2 sin ȳ

R̄n

1þ
3

8
ln

1

8
R̄n

� �
þ

13

16

� �
R̄

2
n þOðR̄

4
n ln R̄nÞ

� �
. (58)

In formulae for the pressure when M51, the leading-order approximation is obtained by putting M ¼ 0 in

every term except the leading factor M3=2.
5. Smoother fields

The acoustic field analysed in Section 4 is produced by a gust with delta-function profiles both in time and
along the span. This section indicates how the field is modified if one of these profiles is smoothed to a
Gaussian or top-hat shape; comparison of the results below shows in detail how the shape of the sound field
depends on the fine-scale shape of the gust.

For Gaussian time variation, the upwash is v0e
�ð1=2Þfðt�x=UÞ=tg2dðz=aÞ, and Eq. (14) gives the far-field

approximation

p ’ �
1

21=2p
r0c0v̄0M3=2 sin1=2 ȳ cos 1

2
f̄

ð1þM sin ȳÞ1=2
ā

R̄
e�ð1=2ÞfðtþMx̄=c0�R̄=c0Þ=tg2 . (59)

The field at an arbitrary position is given by Eq. (5) with F ðo;mÞ ¼ ð2pÞ1=2v0te�ð1=2ÞðotÞ
2

; the o integration can
be performed analytically, to give an expression involving the modified Bessel functions I�1=4ð

1
4
fðtþMx̄=c0 �

ðR̄=c0Þ cosðȳ� wÞÞ=tg2Þ and their derivatives. The remaining w integral may be evaluated numerically.
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For top-hat time variation, the upwash is v0Hððt� x=UÞ=t;�1; 1Þdðz=aÞ, where the top-hat function H is
defined so that Hðx; x0; x1Þ takes the value 1 for x0oxox1 and 0 otherwise. Thus at the fixed point z ¼ 0 on the
leading edge, the gust lasts a time 2t. The far-field approximation to the pressure is

p ’ �
1

21=2p
r0c0v̄0M

3=2 sin1=2 ȳ cos 1
2
f̄

ð1þM sin ȳÞ1=2
ā

R̄
HððtþMx̄=c0 � R̄=c0Þ=t;�1; 1Þ. (60)

The field at an arbitrary position is given by Eq. (5) with F ðo;mÞ ¼ 2v0ao�1 sinot. Analytic integration with
respect to o gives terms in ft� tþMx̄=c0 � ðR̄=c0Þ cosðȳ� wÞg�1=2, so that results as complete as those of
Section 4 are readily obtained. This involves integrals similar to E2 and E3 in Eq. (38) and Eq. (40), but with
exponent 1

2
instead of 3

2
in the denominators of the integrands.



ARTICLE IN PRESS

0 0.5 1
−1.5

−1

−0.5

0

(a)

0
−0.2

−0.1

0

(b)

P
2

� / 2 �

Rn �

Fig. 8. P2 as a function of R̄n at fixed f̄, and as a function of f̄ at fixed R̄n, obtained from Fig. 7(b) (M ¼ 0:8; ȳ ¼ 1
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For Gaussian span variation, the upwash is v0dððt� x=UÞ=tÞgðzÞ, where gðzÞ ¼ e�ð1=2Þðz=aÞ2 . Thus Eq. (13)
gives the far-field approximation

p ’ �
1

21=2p
r0c0v̄0M

3=2 sin1=2 ȳ cos 1
2
f̄

ð1þM sin ȳÞ1=2
c0t

R̄j cos ȳj
exp �

1

2

tþMx̄=c0 � R̄=c0

ðā=c0Þ cos ȳ

� �2
( )

. (61)

The singularity in this expression when, simultaneously, R̄�Mx̄ ¼ c0t, i.e. R̄
0
¼ c0t, and ȳ ¼ 1

2p, occurs
because sound production is confined to the time instant t ¼ 0; thus the field has a large in-phase component
in the vertical plane through the point of maximum source strength, i.e. through the point z ¼ 0 on the leading
edge. The field at an arbitrary position is given by Eq. (5) with F ðo;mÞ ¼ ð2pÞ1=2v0ate�ð1=2ÞðmaÞ2 ; the o
integration gives expressions in I�1=4ð

1
4
fðtþMx̄=c0 � ðR̄=c0Þ cosðȳ� wÞÞ=ððā=c0Þ cos wÞg2Þ and their derivatives,

which may be integrated numerically with respect to w.
For top-hat span variation, the upwash is v0dððt� x=UÞ=tÞgðzÞ, where gðzÞ ¼ Hðz=a;�1; 1Þ. Thus Eq. (13)

gives the far-field approximation

p ’ �
1

21=2p
r0c0v̄0M

3=2 sin1=2 ȳ cos 1
2
f̄

ð1þM sin ȳÞ1=2
c0t

R̄j cos ȳj
H

tþMx̄=c0 � R̄=c0

ðā=c0Þ cos ȳ
;�1; 1

� �
, (62)

again with singularities in the plane ȳ ¼ 1
2
p. The field at an arbitrary position is given by Eq. (5) with

F ðo;mÞ ¼ 2v0tm�1 sinma. Integration with respect to o gives terms in ftþMx̄=c0 � ðR̄=c0 cosðȳ� wÞ�Þ
ðā=c0Þ cos wg�1=2, so that results as complete as those in Section 4 can be obtained. At fixed wavefront
coordinate R̄

0
, the directivities in Eqs. (59)–(62) contain an extra factor 1�M sin ȳ cos f̄, as in Eq. (11).
6. Conclusions and further work

This paper gives detailed information about the most basic sesquipole sound fields which occur in the
aeroacoustics of subsonic flow. Corresponding results for supersonic flow have been obtained by Powles
[10a–c]; further work would be needed for transonic flow. The results may be extended to account for leading-
edge curvature, mean loading, and aerofoil camber by the methods in, for example, Myers and Kerschen [11]
and Peake and Kerschen [12]. Further calculations would determine the effect of diffraction of the near field
by trailing and side edges, and tips, to give multi-lobed acoustic directivity patterns. The effect of finite span
may be modelled approximately by a Kirchhoff-type approximation [13]; an alternative method is to use the
loading distribution near the tips [14].

The results may be useful in computational aeroacoustics, because they provide a transfer function between
an incoming gust and an acoustic source term. Such a transfer function is needed because for leading-edge
noise the acoustic field is not a dipole field generated by the net loading on a blade.
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